The generator matrix

 1  0  0  0  0  0  0  1  1  1  1  0  X  1  X  0  X  0  1  X  0  0  1  1  1  1  0  X  1  0  1  1  1
 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  X  X X+1  1  1  1  1 X+1  1  X  1  1  X  X X+1  1  1
 0  0  1  0  0  0  0  0  0 X+1  X  1  1  1  1  X  X  1 X+1  1 X+1 X+1 X+1  X X+1  0 X+1  X  X  0  0  X  1
 0  0  0  1  0  0  0  0 X+1  1  X  0 X+1  X  0  0  0 X+1 X+1  1  X  1  X  1 X+1  1  X X+1  X  X  X  X  0
 0  0  0  0  1  0  0  0  1  0  1  X X+1  1  1  1  1  1 X+1 X+1 X+1  X  1  X  0 X+1  X X+1 X+1  0 X+1 X+1  0
 0  0  0  0  0  1  0  1  0  1 X+1  X X+1  1  0 X+1  1  0  X  1  X  1 X+1 X+1  1 X+1  0  0  X  1  0 X+1  0
 0  0  0  0  0  0  1  1 X+1  X  X X+1  1 X+1  1 X+1  X  0 X+1  0  0  1  0 X+1  1  1 X+1  0  0  1  0 X+1  0
 0  0  0  0  0  0  0  X  X  0  0  X  X  0  0  0  X  X  X  X  X  0  0  X  0  0  0  X  0  X  X  0  X

generates a code of length 33 over Z2[X]/(X^2) who�s minimum homogenous weight is 22.

Homogenous weight enumerator: w(x)=1x^0+84x^22+172x^23+333x^24+534x^25+784x^26+1102x^27+1528x^28+1848x^29+2415x^30+2820x^31+2993x^32+3268x^33+3037x^34+3016x^35+2551x^36+1936x^37+1560x^38+1048x^39+695x^40+454x^41+280x^42+154x^43+88x^44+24x^45+29x^46+8x^47+2x^48+3x^50+1x^52

The gray image is a linear code over GF(2) with n=66, k=15 and d=22.
This code was found by Heurico 1.16 in 51.6 seconds.